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1. 

Many problems in mechanical vibrations and control theory are modelled by idealized
differential equations containing discontinuous terms. An example of this phenomena is
found in dynamics problems involving friction damping (Wang [1]). Friction occurs in
all real mechanical systems and is often described as a discontinuous force depending on
the sign of velocity. Since the motions of all real mechanical systems are continuous in
time, idealized differential equations modelling real systems must produce continuous
solutions in time. This technical paper presents a mathematical analysis of a simple
discontinuous force equation which may be used to describe continuous motion for a wide
range of physical problems involving friction. The theoretical methods used in this study
are applicable to general vibration and control problems containing discontinuities.

Consider the following ordinary differential equation

dv/dt+S(v)=0 (1)

describing the motion of a rigid-body of unit mass, where v and S=−F are the velocity
and the driving force of the body, respectively. Here S is assumed to be a generalized jump
function defined by

S(v)= 8a0b
if
if
if

vq 0,
v=0,
vQ 0,

(2)

such that the real numbers a and b satisfy: a$ b. Moreover, S(v)=0 for v=0, since
continuous motion is being studied. Equation (1) combined with an initial velocity,

v(0)= v0, (3)

yields an initial value problem governed by a simple discontinuous force equation which
may be applied to model continuous motion.

The initial value problem defined by equations (1), (2) and (3) does not have a classical
solution; that is, no mathematical description of the velocity exists which is differentiable
on all motion time intervals and satisfies equation (1). This initial value problem does,
however, have classical solutions on time intervals which do not contain the jump
discontinuity of S. Time intervals without the jump discontinuity correspond to the times
when the velocity is: vq 0, vQ 0, or v=0. If time intervals are considered which contain
the discontinuity, both continuous and discontinuous generalized solutions of equation (1)
may be found.
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In this study, modern mathematical techniques are used to approximate continuous
solutions of the discontinuous model problem. Three mathematical theories are applied to
obtain continuous solutions analytically and numerically: classical analysis, nonstandard
analysis, and nonlinear generalized functions. The theories of classical and nonstandard
analysis are used to approximate continuous solutions, while the theory of nonlinear
generalized functions is used to determine how the microstructure of the generalized
solutions must be specified to obtain continuous solutions.

2.  

The first step in the analysis of the model problem defined by equations (1), (2) and (3)
is to apply heuristic arguments to obtain a generalized solution for all motion time
intervals. The fundamental idea used here is to obtain classical solutions for each time
interval and then patch these solutions together to obtain a continuous solution.

Combining equation (1) with the definition of the generalized jump discontinuity,
equation (2), yields three ordinary differential equations:

dv/dt=−a if vq 0, dv/dt=0 if v=0, dv/dt=−b if vQ 0. (4)

The solutions to the first and third equations are given by:

v=−at+ c1 if vq 0, v=−bt+ c2 if vQ 0, (5)

where c1 and c2 are constants of integration, whilst, the solution to the second equation
is v=0. Now, specifying an initial value v(0)= v0 and assuming that the velocity is zero
only at a single instant of time, the constants c1 and c2 of equation (5) may be determined
so that the velocity is a continuous function of time. Figure 1 shows an example of a
continuous generalized solution of equation (1) formed by patching the two solutions of
equation (5) together for v(0)=1, a=1 and b=1/3.

Figure 2 shows a second example of a continuous generalized solution of equation (1)
formed by patching two solutions of equation (5) together for v(0)=1, a=1 and b=−1.

Figure 1. Continuous generalized solution of equation (1) for the values a=1, b=1/3 and the initial condition
v(0)=1: · · · · , solution for vq 0; –––, solution for vQ 0.
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Figure 2. Continuous generalized solution of equation (1) for the signum function and the initial condition
v(0)=1. This generalized solution runs backwards in time and is physically unrealistic. Key as for Figure 1.

In this example, the jump function reduces to the signum function. Although this solution
is continuous, it is physically unrealistic because it is multi-valued and, therefore, runs
backwards in time. The backward time evolution of the solution is caused by the sign
change of a and b in the jump discontinuity, here, aq 0q b. All jump discontinuities
with a sign change yield a generalized solution with a branch that runs backwards in time.
This suggests that either the positive branch, vq 0, or the negative branch, vQ 0, may be
combined with the zero solution, v=0, to produce a single-valued continuous generalized
solution for all time. Figure 3 shows the continuous generalized solution of equation (1)

Figure 3. Continuous generalized solution of equation (1) for the signum function and the initial condition
v(0)=1. This generalized solution is valid for all time. · · · · , solution for vq 0; ——, solution for v=0.
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formed by patching the solutions of vq 0 and v=0 together for the signum function with
the initial condition v(0)=1. To contrast this example, if there is no sign change of a and
b in the jump discontinuity, the two solutions of equation (5) may be patched together
to form a continuous solution for all time as in the example of Figure 1.

The next step in the study of the model problem is to apply classical analysis to obtain
smooth uniform approximations of continuous generalized solutions of equations (1),
(2) and (3). To simplify the discussion, the case when S is the signum function with the
initial value v(0)=1 is considered. The goal is to approximate the continuous solution of
Figure 3. Notice that the jump discontinuity S may be approximated as closely as desired
by the smooth function

S(v)3 (2/p) arctan (mv) (6)

for v$ 0 and large values of m. Figure 4 shows the approximation of S for m=10 and
100.

Substituting equation (6) into equation (1) and separating variables yields

−t=(p/2) g
v

1

1
arctan (mz)

dz, (7)

where the initial value v(0)=1 has been applied. The integral on the right side of equation
(7) may be written as

(p/2) g
v

1

1
arctan (mz)

dz=(p/2m) g
h(v)

h(1)

1
h cos2 h

dh (8)

by introducing the new variable

h(z)=arctan (mz). (9)

Figure 4. Smooth approximation of the signum function using the (2/p) arctan (mv) function: · · · ·, m=10:
–––, m=100.
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Then applying integral formula (10) from p. 190 of Gradshteyn and Ryzhik [2], the right
side of equation (8) yields

(p/2) g
v

1

1
arctan (mz)

dz=(p/2m)6tan h

h
+6B2h ln h+

1
h2 s

a

k=2

f(k)(2h)2k7
h(v)

h(1)

, (10)

where

f(k)= [(−1)k(22k −1)/(2k−2)(2k)!]B2k (11)

and where the B2k for k=1, 2, 3, . . . are the Bernoulli numbers. The integral formula
defined in equations (10) and (11) converges for =h =Q p/2.

Equation (10), when used in equation (7), supplies an analytic solution for equation (1)
for te 0 using the initial condition v(0)=1. The infinite series in equation (10) is very
complicated and appears to be unsuitable for numerical work. However, a useful
asymptotic result may be obtained as follows. For vq 0, and large m, notice that

arctan (mv)Q p/2 for all mv and lim
m:a

arctan (mv)= p/2. (12)

Then equations (10), (11) and (12) imply:

−t=(p/2) g
v

1

1
arctan (mz)

dz= v−1+O01
m1. (13)

Therefore, for large values of m, equation (7) approximates the continuous generalized
solution

v=−t+1 if tQ 1, (14)

which gives v(1)=0. To obtain a continuous generalized solution for tq 1, the solution
v=0 can be patched together with equation (14) to yield a solution for all te 0.
This produces the continuous generalized solution shown in Figure 3. A similar argument
shows that equation (7) may be used to approximate a negative branch of a generalized
solution.

Since the integral in equation (7) is very difficult to evaluate for the general jump
function of equation (2), this problem has also been studied numerically. A fourth order,
fixed-step size, Runge–Kutta scheme was used to integrate the differential form of equation
(7) for m=5, 10 and 100. Figure 5 shows that for values of m of the order of 100 or greater
the numerical solution provides a very good approximation of the generalized solution.
This figure illustrates the behavior of the numerical solution at the point where the positive
branch of the generalized solution is mated with the zero solution.

In the above discussion, single-valued continuous generalized solutions of the
model problem were defined and approximated. The smooth approximations of the
generalized solutions developed here were mathematically difficult to construct, because
they required both complicated integral formulae and limit arguments. The approximation
of generalized solutions of the model problem may be simplified considerably by applying
a linear description of the jump function together with nonstandard analysis.

3.  

In this section, it will be shown that continuous generalized solutions of equations (1),
(2) and (3) can be approximated to any order of accuracy by differentiable functions
without using complicated integral formulae or numerical methods. Nonstandard analysis
is a relatively new area of mathematics which emerged from basic research in mathematical
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Figure 5. Numerical solution of equation (1) using equation (6) to describe the signum function: · · · · , m=5;
— — —, m=10; – – –, m=100.

logic. The subject was discovered in the early 1960s by Abraham Robinson [3]. The main
contribution of nonstandard analysis to mathematics is the extension of the real numbers
R to the hyperreal numbers *R which contain infinitely small (infinitesimals) and
infinitely large numbers. The infinitesimals in the hyperreals have the properties that
Newton and Leibniz discovered in their development of calculus, which justifies the
algebraic manipulations of infinitesimals that engineers and physicists often use.
Moreover, the existence of distinct infinitely large numbers that can be manipulated and
used like finite numbers to solve problems provides a powerful new tool for applications.
An excellent elementary introduction to nonstandard analysis is given by Henle and
Kleinberg [4], while a brief overview of the properties of the hyperreal numbers needed
for the present study may be found in Farassat and Myers [5].

The basic idea applied here to simplify the analysis of the model problem is to replace
the smooth approximation of the jump function with a continuous linear approximation.
The case when S is the signum function with the initial value v(0)=1 is considered again.
A continuous linear approximation of the signum function is obtained by joining the line
passing through the origin of slope m to the constant functions v=1 and v=−1:

S(v)38 1
mv
−1

if
if
if

vq 1/m,
−1/mE vE 1/m,
vQ−1/m.

(15)

Since equation (15) is valid for both the real and hyperreal numbers, m and v may
assume any hyperreal value: infinitesimal, finite, or infinite. Now, if m is assumed to be
an infinite hyperreal, say *m, then 1/*m and −1/*m are infinitesimal hyperreals such
that (*m)(1/*m)=1 and (*m)(−1/*m)=−1. This suggests that a line of infinite
hyperreal slope *m may be used in equation (15) to approximate the signum function
over an infinitesimal neighborhood containing zero: [−1/*m, 1/*m]. The main result
of nonstandard analysis is used here: difficult limit processes are replaced by simple
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Figure 6. Continuous linear approximation of the signum function using the mv function on the neighborhood
of zero: [−1/m, 1/m]; · · · · , m=10.

arithmetic processes. Figure 6 shows the approximation of S defined by equation (15) for
the real value of m=10. A real number must be used to represent the plot, because
infinitely small and infinitely large values cannot be plotted directly.

Then combining equation (1) with equation (15), for an infinite *m, yields three ordinary
differential equations:

dv/dt=−1, if vq 1/*m;

dv/dt=−*mv, if −1/*mE vE 1/*m; (16)

dv/dt=1, if vQ−1/*m.

Integrating these equations produces

v=−t+ c1, if vq 1/*m,

v= c2 exp[−*mt], if −1/*mE vE 1/*m, (17)

v= t+ c3, if vQ−1/*m,

where c1, c2, and c3 are constants of integration. Recall from section 2 that, since the signum
function changes sign, one branch of the generalized solution evolves backwards in time,
leading to a double-valued velocity. Hence, the approximation of the generalized solution
will be obtained by patching two solution branches of equation (17) together which evolve
forward in time and ignoring the branch which evolves backwards in time. Therefore,
applying the initial condition v(0)=1 and patching the first two solutions of equation (17)
together yields

v=−t+1, if tQ 1−1/*m,

v= c2 exp[−*mt], if te 1−1/*m,
(18)

where

c2 =1/*m exp[1−*m]. (19)
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Figure 7. Comparison of the linear (———) and smooth ( · · · · ) approximations of the continuous generalized
solution of equation (1) for the signum function and the initial condition v(0)=1. The nonstandard solution
is the linear solution defined on an infinitesimally small neighborhood near zero. –––, 1/10 neighborhood
boundary.

Equations (18) and (19) give a differentiable approximation of the continuous generalized
solution of the model problem shown in Figure 3. This solution is of arbitrary accuracy,
because the linear approximation of equation (15) assumes an infinitely large slope defined
over an infinitesimally small neighborhood. Furthermore, equations (18) and (19) provide
an approximation of equation (14) with a continuous first derivative, since the signum
function was modeled using a continuous function.

Figure 7 compares the approximate solutions given by equations (18) and (19) and the
numerical integration of equation (7), to the continuous generalized solution of the model
problem given by equation (14) combined with the zero solution. The approximations of
Figure 7 assume a real value of m=10. A real number is used to represent the plot of
the nonstandard solution, since the solution is valid for both real and hyperreal numbers.
Recall that an infinitely small branch of the solution cannot be plotted directly. At this
point the astute reader may ask: why use nonstandard analysis in this problem?
Nonstandard analysis greatly simplifies the solution of the problem by encoding the limit
processes into standard algebraic manipulations of hyperreal numbers. By assigning an
infinite hyperreal value to m, *m, the limit of the approximation is built into the solution.
Therefore, the solution given by equations (18) and (19) is infinitely close to the generalized
solution shown in Figure 3. On the other hand, if classical analysis is used, the resulting
solution generated by a linear approximation of the jump function must be shown to
approach the generalized solution of the model problem as m becomes large. Such limiting
processes are often conceptually difficult and mechanically tedious to demonstrate.

4.   

Many linear differential equations with jump discontinuities may be analyzed using
classical analysis. Classical analysis defines the discontinuous functions and their
derivatives to be linear functionals acting on families of smooth test functions. Such linear
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functionals may be defined if the jump discontinuities depend on the independent time or
space variables of the underlying differential equation.

In the present study, the model problem defined by equations (1), (2) and (3) is governed
by a nonlinear ordinary differential equation. This equation is nonlinear, because the jump
function is not linear in velocity:

S(v1 + v2)$S(v1)+S(v2) (20)

for all v1, v2 $ 0 satisfying v1 + v2 $ 0. That is, the jump discontinuity is a function of the
dependent variable, velocity, and not the independent variable, time. In general,
nonlinearities involving jump discontinuities cannot be represented as simple linear
functionals in terms of the unknown function and may lead to mathematically inconsistent
results which depend on the specific method of approximation and not the defining
differential equation.

Over the last two decades, Rosinger [6] and Colombeau [7], working independently,
have developed mathematical theories of nonlinear generalized functions to analyze
differential equations involving polynomial nonlinearities and jump discontinuities.
The goal of their research has been to remove the mathematical inconsistencies that
occur in problems that combine differentiation and multiplication with discontinuous
functions. While the technical details are beyond the present discussion, the basic idea
of nonlinear generalized functions is to define abstract solutions of differential equations
as equivalence classes of reasonable approximations of a specific weak form of
multiplication. By identifying all possible approximations for a given problem with an
equivalence class or classes of abstract solutions, the mathematical inconsistencies are
removed.

This approach yields a weak form of equality, 0, called association, which allows a
theory combining differentiation and multiplication with discontinuous functions. If
equation (1) is cast in terms of the weak equality,

dv/dt+S(v)0 0, (21)

nonlinear generalized solutions may be constructed using these ideas. These solutions will
include both continuous and discontinuous motions. As shown by Colombeau et al. [8],
the determination of a specific nonlinear generalized solution depends on the
microstructure of the solution’s jump function. Here, microstructure refers to how the
nonlinear generalized solution is approximated in a neighborhood of a discontinuity. The
upshot is that idealized problems like equation (1) require additional physical information
to determine specific generalized solutions. By idealizing the jump as a discontinuity,
equation (1) has discarded necessary physical information. For general nonlinear
problems, such idealizations lead to mathematical inconsistencies which require the
introduction of theories of nonlinear generalized functions in the analysis. While these
theories admit mathematically consistent abstract solutions, they cannot specify individual
generalized solutions without additional physical information.

For the model problem, individual generalized solutions are obtained by requiring
that equations (1), (2) and (3) model single-valued continuous motion. Therefore, the
generalized solutions of interest are continuous functions of time. This implies that
the microstructure of the generalized solutions becomes trivial; no discontinuous
solutions are allowed. Considering only continuous motion implies that continuous
approximations of the jump discontinuity may be used to approximate generalized
solutions that evolve forward in time. This property is the fundamental property used to
construct the analytical and numerical approximations of the generalized solutions
presented in this study.
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5. 

Modern mathematical techniques have been applied to analyze a simple discontinuous
force equation; the results of which are applicable to general friction problems containing
discontinuities. Three mathematical theories were used to find and describe solutions of
the model problem defined by equations (1), (2) and (3): classical analysis, nonstandard
analysis, and nonlinear generalized functions.

Classical analysis was applied to approximate continuous generalized solutions of the
model problem by using a smooth function to describe the jump discontinuity. Both
analytical and numerical integration yielded very good approximations of single-valued
continuous generalized solutions. Non-standard analysis was also applied to approximate
generalized solutions of the model problem. Hyperreal numbers were combined with a
linear approximation of the jump function to produce differentiable approximations of
generalized solutions. Non-standard analysis greatly simplified the solution of the model
problem by encoding the limit of the approximation into standard algebraic manipulations
of hyperreal numbers. By using an infinite hyperreal slope in the description of the jump
function, nonstandard solutions representing the limit were obtained that are infinitely
close to continuous generalized solutions. The nonstandard solutions also provided finite
approximations of continuous generalized solutions for real values. The nonstandard
mathematical methods which were applied in this study yielded both insight and
simplification in the analysis of the model problem and are expected to be of great utility
for more complicated physical problems.

Basic ideas involving nonlinear generalized functions were then applied to argue that
the model problem cannot produce a priori continuous solutions without additional
physical information. Individual generalized solutions were obtained by requiring that the
model problem describe continuous motion. This additional physical assumption forced
the microstructure of the generalized solutions to be trivial and allowed the continuous
approximations of the generalized solutions analyzed here.
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